# Wentzel

Computation of Steklov or Wentzell eigenvalues.

Uses radial representation for the shape in terms of Fourier coefficients.

Parametrization uses a vector of the form.

`vec = [a0, as, bs]`

where `as`

are coefficients of `cos`

and `bs`

coefficients of `sin`

$
\displaystyle{
\int_{\Omega}{\nabla\mathbf{u}:\nabla\mathbf{v}} + \beta\int_{\partial\Omega}{\nabla_{\tau}\mathbf{u}:\nabla_{\tau}\mathbf{v}} = \lambda\int_{\Omega}{\mathbf{u}\cdot\mathbf{v}}
}
$

## Algorithm

Wifi propagation

## References

B. Bogosel, The method of fundamental solutions applied to boundary eigenvalue problems, 2016, Journal of Computational and Applied Mathematics

## Authors

Author: Beniamin Bogosel