Elasticity
Algorithms for solving the 2D and 3D static linear elasticity equations
Problem
Solve:
$
\displaystyle{
-\nabla\cdot\sigma = \mathbf{f}
}
$
With:
$
\displaystyle{
\sigma_{ij}(\mathbf{u}) = \lambda\delta_{ij}\nabla\cdot\mathbf{u} + 2\mu\varepsilon_{ij}(\mathbf{u})
}
$
and
$
\displaystyle{
\mu = \frac{E}{2(1+\nu)} ;\ \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}
}
$
Let $\Omega\in\mathbb{R}^n$, $2\leq n\leq3$. Let $\mathbf{u}, \mathbf{v}\in \left(H^1(\Omega)\right)^n$. The variational form reads as follows:
$
\displaystyle{
\int_{\Omega}{\lambda\nabla\cdot\mathbf{u}\nabla\cdot\mathbf{v} + 2\mu\varepsilon(\mathbf{u})}:\varepsilon(\mathbf{v}) - \int_{\Omega}{\mathbf{f}\cdot\mathbf{v}} = 0
}
$
Algorithms
2D
Elasticity equation on a beam.
Result warped by a factor 1000 |
|
3D
Elasticity equation on a beam.
Result warped by a factor 1000 |
|
Optional
Gmsh script:
Mesh |
|
Validation
TODO
Authors
Author: Simon Garnotel