Newton algorithm to solve the stationary Navier-Stokes equations in 2D.
\[\left\{
\begin{array}{rccl}
-\Delta\mathbf{u} + (\mathbf{u}\cdot\nabla) \mathbf{u} + \nabla p &=& 0&\text{ on } \Omega\\
\nabla\cdot\mathbf{u} &=& 0&\text{ on } \Omega\\
\mathbf{u} &=& \mathbf{u}_{\text{in}} &\text{ on } \Gamma_{\text{Inlet}}\\
\mu \nabla \mathbf{u}\mathbf{n} - p\mathbf{n} &=& \mathbf{u}_{\text{in}} &\text{ on } \Gamma_{\text{Outlet}}\\
\end{array}
\right.\]
$
\displaystyle{
\mu\int_{\Omega}{\nabla\mathbf{u}:\nabla\mathbf{v} - p\nabla\cdot\mathbf{v}} - \int_{\partial\Omega}{\left(\nu\frac{\partial\mathbf{u}}{\partial\mathbf{n}}-p\mathbf{n}\right)\cdot\mathbf{v}} = \int_{\Omega}{\mathbf{f}\cdot\mathbf{v}}
}
$
Start with a guess $\mathbf{u}^k$ and iteratively solve the linearized Navier-Stokes at $(\mathbf{u}^k, p^k)$.
\(\left\{
\begin{array}{rccl}
-\nu \Delta \mathbf{u}^{k+1} + (\mathbf{u}^k \cdot\nabla)\mathbf{u}^{k+1}+(\mathbf{u}^{k+1} \cdot\nabla)\mathbf{u}^{k} +\nabla p^{k+1} = (\mathbf{u}^k\cdot\nabla)\mathbf{u}^k\\
\nabla\cdot\mathbf{u}^{k+1}=0
\end{array}
\right.\)