Stokes
Algorithms for solving the 2D and 3D static Stokes equations
Problem
Solve:
\[\left\{
\begin{align*}
-\mu\Delta\mathbf{u} + \nabla p &= 0\\
\nabla\cdot\mathbf{u} &= 0
\end{align*}
\right.\]
$
\displaystyle{
\mu\int_{\Omega}{\nabla\mathbf{u}:\nabla\mathbf{v} - p\nabla\cdot\mathbf{v}} - \int_{\partial\Omega}{\left(\mu\frac{\partial\mathbf{u}}{\partial\mathbf{n}}-p\mathbf{n}\right)\cdot\mathbf{v}} = \int_{\Omega}{\mathbf{f}\cdot\mathbf{v}}
}
$
$
\displaystyle{
\int_{\Omega}{\nabla\cdot\mathbf{u}q} = 0
}
$
Stabilisation term:
$
\displaystyle {
\int_{\Omega}{\varepsilon p q}
}
$
Algorithms
2D
Poiseuille flow in a pipe
Result - velocity (top) and pressure (bottom) |
|
|
3D
Poiseuille flow in a pipe
Result - velocity (top) and pressure (bottom) |
|
|
Authors
Author: Simon Garnotel